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ABSTRACT
An intensive study of the assumed variable
distribution necessary for the Assumed Displacement

Formulation, the Hellinger-Reissner Formulation, and the
Hu-Washizu Formulation is made in a unified manner. With
emphasis on physical explanation, a systematic method for
the Hybrid Stress element construction is outlined. The
numerical examples employ four and eight node plane stress
elements and eight and twenty node so0lid elements.
Computation cost study indicates that the hybrid stress
element derived using recently developed Uncoupled Stress
Formulation is comparable in CPU time to <the Assumed
Displacement element. Overall, main emphasis is placed on
providing a broader understanding of the Hybrid Stress
Formulation.
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1. INTRODUCTION

The Finite Element Method is a numerical method with
firmly established mathematical foundation. Popularized
by the broad applicability, large finite element codes
play a dominant role in the current structural analysis.
Thus, in the past years, intense effort was applied to
improve and optimize the finite element method.

The main thrust of ¢this report is to present an
explanation of the finite element method in the view of
the theory coupled with computational algorythm. The
functionals considered are that of the Hu-Washizu
principle, 7““” the Hellinger-Reissner principle,7rk , and
the principle of minimum potential energy, 7T}. By a
direct comparison of these three functional, the role of
the assumed field variables can be clarified.
Furthermore, through a comparative evaluation, these
theories will be approached in a unified manner.

The motivation came from earlier attempts for the
expl#nation of the class of elements derived under hybrid
stress method. Several months of numerical and literature
research demanded more systematic method for the research
into the hybrid stress elements. Using the latest
development in the hybrid element research, a systematic
method will be constructed step by step starting from the

governing egquations of elasticity.



2. GOVERNING EQUATIONS OF ELASTICITY

Since finite element methods in solid continuum
operate on the governing equations of elasticity, several
key observations must be emphasized before introducing the
weak or the variational form of the equations. In this
analysis, only the small displacement theory of elasticity
will bDe considered. Also, the Rectangular Cartesian
Coordinates will be employed for defining the three

dimensional space.

STRESS

The condition for the stresses are obtained directly
from the Newton's laws of motion pertaining to the bodies
at rest, i.e. the force and moment egquilibrium.
Application of these laws on the stress yields the
Equations of Equilibrium for stress.

3 , Wy 2o ¢ F, =0

K ay Az

Wy 4 W L Wye s E =0 (z.1)
ax ay I Yy

0k , 30va , 203z ., =0

X ay Y *

In the matrix form,

dQT + f: =0

~

vwhere,
o 0, 0, O¢, Oy y Oq }
U = Six stress components =(5} Yy "2 Vxy YR Vxg
F = Body force components
D = Matrix of differential operators
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Thus, the chosen stress field must satisfy the

r

pointwise homogeneous equilibrium dictated by the Newton's
laws. This applies to the any functional whether it
contains stress as explicit unknown functions or
implicitly through the unknown displacement functions.

Further discussion is reserved for later sections.

DISPLACEMENT

Since the class of elements presented require c®

continuity, the isoparametric formulation is the obvious
choice. These elements will be later refered to as the c®
continuity elements. The procedure in obtaining the
interpolation functions are well outlined in most finite
element reference books, e.g. {2]. The notation used for

the displacements are

u (2.2)

STRAINS

The strains are defined as

du _ -1
Ex s "a-; EY - aY Ez ¥ - (2‘3)
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These six independent partial differential equations will
be denoted as the Strain-Displacement Relations.

For the functionals, 7rp and 7ra, ' where
displacements are included explicitly as unknowns 1in
formulating the elasticity boundary value problem, no
further conditions are necessary to ensure the existence

of single-valued displacement. However, for 7T since

HwW ’
the strains are also considered as independent unknowns,
the compatibility conditions must be imposed on the
strain-displacement relation to ensure that the unknown
strains are indeed compatible with the unknown

displacements.

The Compatibility Equations are

2
e, . ‘15)' - 2 &Ly -0

ayl axz 2:37

e L, BE - g LEa =0

nt ay* ¥

fgb + E:E‘ - 2 3155? =0 (2"*)
6’3! AX X 37 vz
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These equations are known as the St.-Venant's
compatibility equations. However the six egquations do not
represent six independent <conditions. Yet the usual
procedure is to include all six equations in the interior
problem formulation, but to remember that they represent
only three independent conditions [3).

Thus far, all the equations presented are completely
independent of the relationship between stress and strain.
They are applicable to any type of continuous body
undergoing small displacement. However, to predict the
behavior of a structure it is also necessary to know the
components of stress as functions of the components of
strain and vice versa. Through the Stress~-Strain Relation
the material properties of the body enter the problem. In
the following development, the materials considered will
be assumed to follow the generalized Hooke's law with 21
independent constants.

The stress-strain relation can be written in a matrix

form as
g = ¢E

d

an (2.5)
€ =5g

where,
s = ¢’

For this stage the most predominating factor must be



pointed out. This 4is simply that the stresses, the
displacements, and the strains must satisfy these
governing equations. When the approximate functions are
used to solve these equations, the optimum choice of the
assumed function 1is the one that satisfy each of these
equations a priori to the highest polynomial order. This
argument can be used to sort through all the admissible
functions in formulating the best general finite element.
Thus, whatever variational functional used to formulate
the element, one must always refer back to the physics of

the problem and not sink into the mathematical generality.
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3. VARIATIONAL FUNCTIONALS

Without belaboring on the actual derivation of each
functionals, the main references will be indicated and
only the pertinent information for this discussion will be
outlined. Presentation is organized to clearly indicate
the a priori conditions and the stationary conditions

which provide the Euler egquation for each functional.

PRINCIPLE OF MINIMUM POTENTIAL ENERGY, TYP(Q)

A priori conditions:

u dV - f’_fgafs (3.2)

X in V (3.1)
|
|

ETE +* E =0 in V (3'3)
T = T on 'S&
~ ~
where,
g = Strain
O = stress
C = Stress-strain law



U = Displacement

E = Prescribed displacements
T = Prescribed traction

E = Body force

V = Volume
51- Portion of surface where displacements
are prescribed

S;-— Portion of surface where stresses

are prescribed

In TTP ’ the strain-displacement relation,
stress~-strain relation, and prescribed displacements are
identically satisfied. However, the equilibrium condition
and the prescribed tractions are only satisfied in a
variational sense. By relaxing all three a priori
conditions by wusing the Lagrange multiplier method, the

generalized functional, TTHN' can be obtained.

HU-WASHIZU PRINCIPLE, /(. (u, ¢

- T

£)

A priori conditionas: NONE

- - T
Mo - [ [b€ce-Eelav <[ Ts 45
Hw v [1 ~ ] Se (3.4)

(3-5)

=0 in V



I=\~)g = ? on sc

Te = VxS * Yy Cuy +r J; Ga

3 = - Directional Cosines
All governing - equations are satisfied in a
variational sense. Yet the price paid for the
generalization is the two additional unknowns E and

o . The Hellinger-Reissner Principle <can be easily

~

obtained by introducing the stress-strain relation.

HELLINGER-REISSNER PRINCIPLE, Jlg (u,g)

A priori conditions:

The stationary condition, 57‘[R =0 ,yields

Sco = Du
- -~ in V (33)
DS+F =0
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By satisfying the equilibrium egquations identically,

7“{ and 7Thw can be shown to reduce to the Hybrid

formulation via Principle of Complementary Energy [4].

Yet with availability of isoparametric formulation for c®

continuity elements, the Hybrid elements can be formulated
using 7Tk or Ter in more expedient manner.

In a recent publication by Pian and Chen [5], new
formulation for hybrid elements provides a method to
directly take advantage of the sparse nature of matrices
involved 1in the construction of the hybrid elements.
Briefly, the new formulation introduces an additional
displacement field which act as a Lagrange multiplier on
the homogeneous equilibrium equations. The major
advantages will be described in the later sections. These
new functionals will be refered to as the uncoupled stress

versions.

UNCOUPLED STRESS VERSION OF Tlq AND 7l

The element displacement g is divided into two

separate parts.

“ = Uy + Uy (3.9)
23 is the usual compatible displacement in terms of the

10



nodal displacements. a is the additional internal
displacement which acts as the Lagrange multiplier for the
homogeneous equilibrium. When this form of displacement
is implemented into the Tﬁk and 1THw' Equations (3.7) and
(3.4), with body force and prescribed traction terms

dropped, the resulting equations are

Mg = Sv [£o%50 + g7(0y) — (T2 4, ] Y (3.10)
'n'ﬂw:g {'7_ £7ce -s’e+67(D g)+o-*(ou>)] av (3.11)
V -~ ~ -~ -~ -—

As a remark on notation, since the hybrid formulation can
be obtained via Tlg or Hw in both coupled and uncoupled
stress versions, 'ﬁ; will be used to refer to the general
hybrid element case where the stresses are constrained to

be in equilibrium.

11



4. FIELD VARIABLES and STATEMENT of EQUIVALENCE

The first gquestion that must be answered in any
finite element development is whether the method
converges. The mathematical proof for the convergence of

7T; and 7Th are diven in the References [6] and [7].
Yet these proofs only justify the wuse of the finite
element method and not whether it is feasible for
engineering application. The demanding requirement is the
rate of convergence.

The two modes of convergence are the h=-convergence,
the diameter of the 1largest element, h-max, approaches
zero, and the p-convergence, the minumum order of the
polynomial basis functions, p=-min, approaches infinity.
The comparison of the rate of convergence between these
two modes for .ﬂ} is covered by Bubuska and Szabo [8].
The results given in this article should be <clarified in
the view of general purpose elements. First, most
structural problems only require 1low order polynomial.
Thus the 1lower order elements can be employed for most
practical engineering problems. Secondly the special
purpose elements and other methods such as the reduced
integration technigues should be considered. The main
reason for the discussion of this article is to point out
that before the general purpose elements can be
constructed, better unified understanding of the special

purpose elements and various other techniques is

12



necessary. As the solution of the problem by finite
element method becomes more complex, as exemplified in
crack and composite material analysis, the analyst
judgement and experience will not be adequate in
determining the accuracy of the solution.

Another important point that must be defined involves
the past attempts to improve elements based upon 7ﬁ- .
The first workable attempt was presented by Wilson (9]
with his incompatible displacement models. Recognizing
the deficiency in the isoparametric displacement elements,
he introduced the bending modes into the element
displacement field. Other trials that falls into this
catagory can be exemplified by the introduction of Z%
singularity by distorting the nodes. The second catagory
can be classified into the scheme of reduced integration
technique. This technique works well to prevent locking
in the generalized shell element as well as other
applications. The major point that most researchers in
finite element method ignored is the fact that both
Wilson's incompatible element and the reduced integration
technique result in identical stiffness matrix as the
hybrid formulation. This bolad clue that hybrid
formulation can reveal ¢the way ¢to develop the optimal
element has been casually dismissed in view of
computational cost in a premature fashion.

with this emphasis clearly made, a close examination

of the finite element method in a unified manner can be

13



made. First the field variable for each functional will

be listed.

'ﬂ; (4) displacement
T (¢,2) displacement, stress

‘71;“(!.2',{) displacement, stress, strain

The Statement of Eguivalence describes that when the
displacement modes from 'ﬂ} yields the stress and strain
modes for 7TR and ‘ﬂ;w p the three functionals are
equivalent or identical. To illustrate, take the simplest
case of linear displacement modes. Since this yields
constant stress and strain modes, if ¢ and g contains
the constant modes, the three functionals are equivalent
up to a constant stress and strain. The argqument directly
leads to the order of equivalence.

From the consequence of above statement, using the
inductive reasoning, any <class of problems that have
constant stress of strain will yield the exact solution
using any of the above functionals. Using the Statement
of Equivalence as a benchmark, the examination of each
functionals separately may be continued. As a warning,
the mechanics of construction of the desirable field
variables are left for the later section and should not
enter here as a consideration. This is justifiable since

for clarification purposes, ideal cases may be presented.

14



- T, (w)--

A priori conditions (3.1) imply that the choice of '3
automatically determines £ and ¢ . Under isoparametric
formulation, there is no flexibility on the choice of u.
Therefore, further discussion on u is not necessary.

Recall, from the section 2, that the governing
equations are the egquilibrium equations (2.1), the
strain-displacement relation (2.3), and the stress-strain
relation (2.5} Equations (2.3) and (2.5) are
automatically satisfied under the isoparametric
formulation. However, the equilibrium equations (2.1)
applied to the stress components obtained from the
displacement modes 1is not satisfied. Furthermore, the
stress modes are artificially coupled. Artificial in a
sense that one stress component coupling into another in a
way not possible under -equilibrium considerations. The
undesirable ¢trait appears as locking for the bending
problem. The solution to bypass this problem is to assume

separate u and ¢ with € satisfying equilibrium, thereby

satisfying all of the governing equations.

- T (u. g)--

Under the governing equations the forces, Q , and the
deflections, u, couple only through the stress-strain
relations. By choosing u and O independently, all three

governing equations can be satisfied a priori. Therefore,

15



with u obtained through isoparametric formulation and £
chosen correctly, an optimal general finite element can be
constructed.

In selecting the stress field, two articles provide
means to overcome the preliminary roadblocks. A method to
bypass the zero-energy deformation modes due to the rank
deficiency in the stiffness matrix is outlined by Pian and
Chen{10)]. Their method simply matches a stress mode for
each possible strain mode in order to force non-zero
strain energy. This method is easy to apply and provide
effective means to detect and eliminate the troublesome
zero-energy deformation modes.

The second article, by Tong and Pian [71, on the
convergence of the finite element method based on assumed
stress and displacement distribﬁtién, outlines the
procedure to gage the accuracy of such an element. 1In
order to obtain progressively better accuracy, both the
stress and the displacement approximations must be
improved properly and simultaneously. In another words,
the 1largest error, whether the error is from the u or O,

is the error of the finite element approximation.

-= Tlelurg £ )--

The Hu-Washizu principle is a generalized functional
which allows full flexibility on the choice of the assumed

field variables. This is called "generalized" since no a

16



priori assumption is made and thus the governing equations
of elasticity are satisfied as Euler equations of the
functional. Even with the full flexibility, the choice of
the assumed field variables follow the same constraints as
indicated for 7TR . Although using 7T;w to obtain a
hybrid element seem a "round-about" way, the reason will
be apparent under computational efficiency dealing with

anisotropic material.

OLE OF THE LAGRANGE MULTIPLIER

In the finite element method, the Lagrange multiplier
relaxes the corresponding governing equation. Thus, the
resulting functional Dbecomes more f;exible for the
implementation of the desired element properties. From
the view of understanding the mechanics of the finite
element method, the Lagrange multiplier decouples the role
of the assumed variables. From the view of computational
algorythm, the Lagrange multiplier introduces flexibility
needed to reduce computational cost. By decoupling the
aésumed variabies, algorythms can be implemented to take
full advantage of the sparse nature of the necessary
matrices for element generation.

Even with added flexibility, emphasis must be made on
a simple knowledge that for a given well posed boundary

condition, the governing equations of elasticity has a

17



unigque solution. Thus restriction depends on whether the

element is general purpose or special purpose element.

18



5. GENERAL PURPOSE FINITE ELEMENTS

The key to constructing the general purpose finite
element is the actual understanding of each element in
both mathematical and physical sense. In the early stages
of hybrid element research, Irons provided a strong
physical insight in the process of the development of an
assumed stress version of the Wilson's incompatible 8-node
isoparametric brick element [11]. He obtained the correct
stress parameters by simply choosing the modes that
describes physical states of the classic problems. For
example, the pure bending modes should be included in the
stress field, whereas other terms that contribute to the
spurious strain energy should be excluded. As Irons
pointed out, the isoparametric element prevents the need
for engineering insight. Both the researchers and
analysts must recognize the limitations of each element
which is <clearly provided in the development process of
hybrid/mixed formulations. The closed minded approach of
using the simplest functional, 7T§ , and ignoring the rest
-will hinder the progress. Recognize that the construction
of isoparametric element is simple because the steps allow
no flexibility and thus faced with its full limitations.

Falling back on the Statement of Equivalence, any
desired element characteristics, when proven to exist in

1T} formulation can be reproduced in the other

functionals. Since the Wilson's incompatible element and

19



the reduced integration scheme can produce pure Dbending
modes, these desired characteristics <can be reproduced
using 'ﬂ; or 'ﬂ;w. The difference lies in the algorythm
used for the_construction of each element.

Thus far since only the c?® continuity elements were
considered, the time 1is ripe for the discussion of the
elements requiring,c' continuity as later referred to as

CI

continuity elements. Since the original application of
the hybrid formulation was intended for the c! continuity
elements using the modified complementary energy principle
[12]), this discussion inevitably follows.

First recall that the primary reason for the

derivation of the beam, plate, and shell theories were to

simplify the analysis in order ¢to obtain an analytical

solution. Each theory is based upoh the assumption that
one or more dimensions of the problem collapses. To
illustrate, the governing equations can be

non-dimensionalized using a characteristic dimensions of
the problem. As one of the dimensions collapses, for
example the thickness, the equations can be expanded into
.a perturbation series. Thus, the structural theories are
basically the 1leading order, or the zeroeth order,
equation of the governing partial differential equations.
As the perturbation parameter increases, the accuracy of
the 1leading order equation diminishes. In order to
improve the range of validity of the approximation, later

works introduced the transverse shear effect as

20



exemplified by the Mindlin plate theory. Although the
attempt will not be made here, the transverse shear effect
probably is the first order correction of the perturbation
expansion.

The price paid for the simplification made by the

! continuity in

structural theory is the requirement for C
the finite element analysis. Even to this day the
agreement whether this price is justified in the finite
element analysis has not been reached. However, the
degenerated plate and shell element is gaining popularity
for the practical applications. Note that the degenerated

o continuity for the

element class only require C
displacements.

In the article by Bathe and Bolourchi [13)], an
extensive coverage of the degenefated plate and shell

element using 1Th formulation has been made. The

numerical examples given indicated that the best solution

is obtained by using the selective, or reduced,
integration technigue. Thus by using the hybrid
formulation the results obtained through reduced

integration can be identically reproduced.

' continuity elements 1is

The major advantage of the C
the ability to represent the bending behavior. If the c°®
continuity element can represent the bending behavior,
then the general purpose finite element can indeed be

constructed. The line of research along this path |using

7TP formulation has been hindered through the difficulty

21



arising with the locking problem. Since locking is caused
by artificial coupling that is inherent in the
isoparametric assumed displacement formulation, the
problem can be easily remedied by the use of the hybrid
formulation. Furthermore, the bending modes can be
implemented even in the linear hybrid elements. Then the
only limitation on using a solid element to model, for
example, the thin plate behavior is the numerical
stability. By using high enough decimal precision this

limitation can be avoided.

22



6. SYMMETRY AND RELAXATION

As numerically demonstrated by Pian, Chen, and Kang
[141, the symmetry condition is an important criterion
that must be considered in obtaining the assumed field
variable distribution. This is physically consistant
since the finite element should be symmetric in all three
directions. For example, when choosing the stress modes,
bending behavior in all three coordinates should be
represented. This criterion is invaluable tool for the
solid element construction.

Before the relaxation condition can be described, a
better understanding of the zero-energy deformation mode
(ZEDM) is in order. Although mathematically ZEDM is a
rank deficiency beyond the rigid vbody modes in the
stiffness matrix and its prevention outlined in the
reference [10), more physical explanation is necessary.
In the case of solid elements, each node <contains three
independent displacements, u, v, and w, to describe all
possible motions of the node. With all the element nodes

" moving in conjunction, all possible deflection modes can

be determined. For most of these deflection modes
physical significance can be attached such as pure
tension, shear, or bending. For the rest, no such

physical association <can be magde. Granted each material
point has three degrees of freedom, but that point cannot

be considered as an isolated particle in free space. A

23



continuum collection of material particles has additional
physical deformation restrictions. The modes with no
physical association arise strictly through the
mathematical modeling process.

Whether the deflection mode has a physical
significance or not, the corresponding non-orthogonal
stress mode must be provided in order to prevent ZEDM.
Non-orthogonality of the modes guarantee non-zero strain
energy. Therefore by identification of all the deflection
modes, ZEDM's can be easily eliminated.

As a classic example of the duvuality principle, a
parallel analogy is presented by Loikkanen [15] using the
stress modes. In the article, he nicknamed the "nonsense"”
stresses refering to the stress modes with no physical
association. However, for the purposés of generalization
for the higher order elements, the use of deflection modes
will be more convenient since through the isoparametric
formulation the deflection modes are given and the stress
modes yet to be determined. Note that any non-orthogonal
stress mode can be used even though the lowest order mode
- is preferred for the numerical integration considerations.
Figure 6.1 pictorially summarizes the above discussion.
For continuum problems, a complex combination of forces
required to excite such an element deflection within a
mesh arises only for the occasion when the mesh is much
too coarse.

From here on, the "nonsense" stress mode refers to

24



any stress mode with only general non-orthogonality
restrictions used in conjunction with the deflection modes
with no physical association. Wwith this in mind the
relaxation condition can be simply stated. For the
"nonsense” stress mode and the corresponding deflection
mode, the governing equations can be relaxed without loss
of accuracy of the element. In the practical application
of the above statement, in 'ﬂk the equilibrium condition
can be relgxed for the "nonsense" stress modes and in T&w
the stress-strain relation can also be relaxed.
surprisingly large computational costs can be saved by
using the relaxation condition. In addition, more
accurate solution <can be achieved by eliminating all the
supporting terms necessary to keep these "nonsense" stress

modes in equilibrium.

25



7. FINITE ELEMENT METHOD

For the finite element method presented below, only a

single element domain is under consideration for each of

the functionals.

7.1 PRINCIPLE OF MINIMUM POTENTIAL ENERGY, T(p (u)

In using the principle of minimum potential energy to
formulate the element stiffness matrix the following

functional Tl for an element should be stationary,

-7 -7
szigifsgdv—gfgdv-gf_gds (3,2)
v 14 Sd
In the matrix form,
T T
o= 3 B'ke - Q¢ 1)
where
K = sStiffness matrix
g = Nodal displacement
@ = Load matrix

Furthermore,

c8 dv (7.2)

T ds

The relations used above are
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(7-3)
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"
3 v}
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1 4v,
2
[ g
{oo
I
o
tog

where
d = Interpolation matrix
2 = Derivative matrix
g = Strain-displacement matrix

27



7.2 HELLINGER-REISSNER PRINCIPLE, . (u,Z)

For the Hellinger-Reissner principle, the following

functional 7Tk for an element should be stationary,

T = {5 27sg +gm(ee) -FTu] dV
v

R (3.7)
D Tk - [ xTCedds
S ~ T Se
In the matrix form, assuming u=3 on S, ,
T, = TAHE -fSE - 0'¢ (7:4)
where
g = P
~£ (7.5)
u = N §
and
H = j PTsP dv
Y (76)

The matrix, 2, contains the internal stress modes and
é is the corresponding unknown coefficients. In order to
the

obtain the standard stiffness matrix form, use

stationary condition on Equation (7.4) with respect to ﬁg'
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(7.-7)

or

g = H'gg

Substituting back into Equation (7.4) yields the familiar

form
T T
T, = 28§ K% -Qyg (7-%)
where,
K = _C:,T-/j"g (7.9)

In order to obtain the stiffness matrix, Equation
(7.9), H matrix must be inverted. The order of H matrix
is the number of stress parameters, /3 ‘s, used for the
element development. The condition for the existence of
the solution for F»'s is given in the reference [7]. Let
m equal ¢to the number of ﬂ's, k equal to the number of
element degrees of freedom, and 1 equal to the number of
rigid body modes. Then this condition is simply that
m2 k-1, Therefore, since the order of the H matrix |is
(msm), the minimum possible m is k=-1. Since the number of
algebraic steps required for the inversion is on the order
of m3, the computational cost for generating the stiffness
" matrix can be significantly more than that for the 7T;

element stiffness matrix.
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7.3 HU-WASHIZU PRINCIPLE, (2, g , £)

For the Hu-Washizu principle, following functional

Tyw should be stationary,

=T -— T
i =S L g'ce - Fu dv -g T uds
nw v[z - ] Se¢ (3.4)
- g ET(Q‘EE)CIV - ( T (4 -2Z)ds
1 Su
In the matrix form, assuming g=§ on S, .
Tl = 4+ o Jx - Ho( +/€ -Qrg (7.10)
where
g = Ff
7.1
€ - pa (7.0)
u =N g
and
H={ PP v
~ v N e
I = S P'C P 4V (7.12)
Y

6
n
repatii

10
"

S NTF dv o+ S NTF ds
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With the assumption that the material behaves according to
the generalized Hooke's law, the use of same modes for
both stress and strain is consistent since strain is a
linear <combination of stress and vice versa. However the
major deficiency in using 'ﬂ;w formulation in this form is
that both the stress equilibrium condition and the
stress-strain relation cannot be enforced a priori for the
physically significant modes.

Using the stationary condition with respect to « and

£ .

?:E?’ = J & - F”ﬁ =0

3“ ~ -~ ~ I

% (7.13)
OMuw = _Hea + Gf =0

3

or

«: H'gg
-7 (7.14)

g=H'3x = H' IR G¢

Substituting back into Equation (7.10) yields

T T

kK% - Q% (7.15)

][Hw T2

~

where

P
1]
)
s
Ty
' X
1

(7.16)
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7.4 UNCOUPLED STRESS VERSION OF Tlg AND Iluw

As given by Pian and Chen{5] uncoupled stress version

of T with additional Lagrange multipliers u, is
T T
T, = S [-1g'sc + g7 (DY) -(27e) ] AV (3.0)
v

In the matrix form,

S T T T
T = "3 fTHE ¢ £TGE - £TR2 (7.7
where
¢=FRg
g = Ug+ U,
Ug = M ¢ (7.18)
Uy = M A
R’ = € £
ET = Homogeneous equilibrium operator
“and
H=1{ pTsp dv

v — T F

(7.19)

>
1]
™
<
{m
4
A
[
<
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Using the stationary condition with respect to /é and a '

T . - HE + G§ -RX =0
Y: ~ 1= ~~ ~~

(7. 20)
aTﬂK T
—8 = -R =0
IA R £
or
-]
[é - -’j ng - Bé) (7.2')
2:(RH"RY RTH'G 2
Combining,
g0 F g (7.22)
where
= T,,~ L Y
G=6G6-R(R'HR) R'H g (7.23)

The resulting stiffness matrix is

T {

(7.24)

I EOl
{5

K = H”

Although at a first glance the uncoupled stress
version of '7TR seems overly complex, this functional
elegantly takes a full advantage of the sparse nature of
each matrices. Observe that the necessary bulk matrix
multiplication, Equation (7.23), is performed only once.
.With an appropriate choice of u, this formulation
becomes identical to the standard 7ﬂR P Equation (3.7).

More careful examination of the mechanics of the element
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construction is worthwhile at this point.
Since the equilibrium condition is imposed through
the use of the Lagrange multiplier EA ’ the stress

components are uncoupled.

r - —
o\ ( W
x P,
s | 7k 2 ‘
-2 <
G. (7.25)
2‘ = { 6'1 { = :.PS b s
Y Ps ﬁ (23
o
G2 = P Es
G P
§ l'!J ! 'Y ] Lﬁ‘.‘
For the reasons of computational efficiency, 1Th, should
be only used for the isotropic material. For the

anisotropic material, the uncoupled 1T;w will be much more
efficient.
From the Egquations (7.24) and (7.23), to generate the

stiffness matrix g and (RTBdR) matrices must be inverted.

~ A e

First examine the H matrix for the isotropic material.

Define

31|
i

r
S E; P dv (7.26)
14

After algebraic manipulation, from Equation (7.19)
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—.--' - - - -
P, vwPh P
-l —_— (o]
P, J P, ~
)
= _E L (7.27)
~ o 1-vE =y 5~
SYm_ 2 ~4
1=V =
< s
1-v g !
=z
assuming
fl= P, = f3
Thus the order of inversion is drastically reduced. The

choice of setting P, =P,=P 4 instead of equating all six gi

v

is induced by the necessary inversion of (R Eﬂﬁ) matrix.

r

The order of (R ﬁqg) matrix is determined by the required

number of A's, Egquation (7.18), to impose equilibrium
condition. The number of Ars required can be determined
by imposing equilibrium on the stress components and
counting the number of constraints on the ﬁ's. Therefore
the tradeoff is that if all six Bi's are equated, the
number of A's will increase drastically.

The reduction of the inversion order of H matrix
solves the question of the high computational cost using
hybrid elements. An additional flexibility in the
uncoupled stress formulation provides more versatile
element. When the element is skewed the displacement

modes becomes correspondingly skewed in the rectangular

Cartesian coordinates. In order to exactly match these
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skewed modes, the assumed stress modes should also be
defined in the natural coodinate system. The uncoupled
stress formulation provide this flexibility.

In order to establish the mechanics to assume the
stress modes in the natural coordinates, further
explanation of the R matrix, Equation (7.19), is needead.
The stationary condition, Equation (7.20), and the
Equation (7.19) provide two possible ways to obtain the R

matrix.

R = Sv ETM 4V (7.19)
R'E =o (7. 20)

Using Equation {(7.20) the constraints on the ﬁ's obtained
through the homogeneocus equilibrium equations can be
directly imposed if the stresses are defined in the
rectangular Cartesian coordinates. The E_matrix in this
case simply zero or couple the appropriate /9'5. By
assuming & and u, modes in natural coordinates and using
Equation (7.19), similar type of <constraints can be

- imposed.

For the Hu~Washizu formulation,

L] -~

v .
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In the matrix form,

o(”xo(-/a

=
T
1]
pl-

tq
n

'

™

!
" [ N
1 IR v
R
*
s
>

}
>

1}
'3
Y

_‘
T
1"

and

2
n
< '
v
-‘
D

>
"
N
'm
*
t

Using the stationary condition,

Mow - -He + GF
3R N
B_Eu = T —}-i-,é
a% ~ -~ ~

(7.28)

(7.29)

(7.30)

A =0
R2 (7.31)

= 0



o/
'
Z

—" = - R =0
32 AN
or
— =
2= H' [G¢8 -R2]
ﬁ = A7 T x (7.32)
-t -1 - -
2= (R'E"3R7R) RTA"TH™g
Define,
W= A3 A (7 33)
— -1
G = G- R(R'WR) R'WG (7-34)
The resulting stiffness matrix is
-7 - (7.35)
K= §'wg
Since the Hu~Washizu formulation relaxes the

stress-strain relation, further constraints on the choice
of the P matrix must be established. These constraints

arise due to the assumption that

c=PFPE (7.29)
£ - F

Define 2 as
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i )
g
e, °
P
Z = ae P (7. 36)
~4
2 Ps
P
i ~¢

For the anisotropic material law, in order to obtain
g: gg (2.5)
exactly, the P matrix has to be chosen such that

PZ:E=EQ=ES=P‘

b 3

~\ -~

For the orthotropic case, only 2‘,21,23 must be equal to
each other. To satisfy the pointwise equilibrium, the
procedure used for 7TR also appllesvto this functional.
When the matrices required to generate the stiffness
matrix for the uncoupled stress 7ﬂ\ and 'ﬂ;M,, the
equivalence condition for the two functionals are observed

to be

-t -1 -t

w= H I H =H (7.37)

At this point, the purpose in exploring the Hu=-Washizu
principle can be easily demonstrated. The most
significant difference between the finite element
formulation using 7Tk and 'ﬂ;w arises for the anisotropic
material. To illustrate, for a 20-node solid element, the

minimum number Oftﬁ ‘s is 54. In order to satisfy the
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requirement that all Ei are equal, 120 /g's (full cubic)
are required. To apply equilibrium and reduce this to 54
ﬂ's, 66 A's are necessary. Thus the order of (B?Eﬂg f.
required for the stiffness matrix is 66. This defeats the
purpose of using the uncoupled stress approach.

In the Hu-Washizu formulation, ¢the stress-strain
relation can be relaxed for the "nonsense" stress terms
analogous to relaxed equilibrium condition for 7n\.
Thus, the stress-strain parameters gi can be assumed to be

only identical up to a chosen order. Furthermore,

different gi's can be used since E is in a diagonal form.

- )
B .
. B .
H =
-~ Y 5- (7. 39)
(o] ~+ -}
~ Pes
P
i Tae |
where
Fii = S sz P. dv (i not summed) (7.39)
-~ -~ ~‘
v

By also relaxing equilibrium for the “"nonsense" stress
terms, the total number oflﬁ's required can be greatly
reduced. A numerical example is provided in the later

section.
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8., ELEMENTS

8.1 4-NODE LINEAR PLANE ELEMENTS

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

Interpolation functions for 4-node plane elements are

4= 28 (8.1)
N = -"17("*};?)('*7;7)

£= ’11'314
By expanding the interpolation functions Ni' the

displacement modes can be obtained. The coefficients of

each mode is denoted «}.

U= & +x 3 + X3 + % T

xg + % F Tt %] T XY

(2-2)

v

Without loss of generality, since isoparametric mapping

has one-to~one correspondence, consider a rectangular

element with x and y correspond to '? and 7

14

respectively. Using the strain-displacement relation, the
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strain modes corresponding to Equation (8.2) are
Ex = Xy v Xy
6, = oy 4 x (2.3)
Ty = (Gre) ¢ xyx + gy

Isolating each strain modes,

i_’;:; °:(z7 } EvovgaTiON (3.4)
‘3’17 = Xg v K } DiISTORTION (2.5)
£x= ¢i4Y EK =0
& = O £, = og X (%.6)
3;7 = OQ’X 3;, = Xg y

The two modes indicated in Equation (8.6) demonstrate the
artificial coupling inherent in the isoparametric
formulation. This coupling nature is the reason why '7T;

elements handles the pure bending poorly. In pure bending
the shear term approaches zero as the thickness
'diminishes. The two modes in Equation (8.6) with the same
coefficient must increment both normal and shear strains

simultaneously.

WILSON'S INCOMPATIBLE ELEMENT

Wilson's incompatible displacement fields for 4-node

plane element are
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Uz X, + & § + Ry v X 50 + 2, ('-}') + A, (1-9%) (

2 A 2z 27)
°<5+°‘6}“'°‘7')*°‘8§')*2 (-3%) + (1-7)

<
1}

The four additional terms are the incompatible

displacement terms to represent the bending behavior. The

analysis of this element follows the same procedure.

£y = X, + q4y-2)\,x

€, = oy + XgK ~ 2 A Y (8.3)
Ty = (Kat &)+ XX + X37 —Z X, Y- 225 X

By redefining the coefficients in Equation (8.8) as

A, = -2 A
] 4 3 (?.q)
the strain modes can be isolated. ' Upon substitution,

€, = Ay + At 2A3Y - 22X

£, = ‘x7+_/\zx+2},.x—2A4)' (2.10)

(g ) v A x +ARY

Although the bending behavior is retained in the Wilson's
incompatible element by the added >‘3and 7\2 modes, the

element fails the patch test unless the shape of the

element is rectangular{i11].
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HYBRID ELEMENT

A demonstration of constructing the uncoupled stress
7Tk and 7Thw elements is left for more general solid
element discussion. For the plane elements, only the
hybrid elements constructed wusing the standard 7‘-& are
illustrated.

To eliminate the zero-energy deformation modes, the
strain modes obtained from the displacement modes,
Equation (8.3), provides a convenient method. Each strain
mode must be matched with stress mode to form non-zero
energy. The technique is to first eliminate artificial
coupling by using additional.ﬂ”s in the matching process.

Thus Equation (8.3) forms

T = o7 FaY o (2.11)
Oy = B2 + Fs X

Oy = fz t feX *f7Y

Other modes, such as & =x and Oy =y, are not
considered since they introduce additional error. Since
these modes are not present in the strain modes, they
interact with all the non-orthogonal terms in the element
energy integral and thus introducing artificial coupling
error. To illustrate, if the mode Uy =‘ﬁ,x is included
equilibrium condition requires that a}y = zpty. The
coupling arise when 0}Y='-F§y interact with N# mode in
Equation (8.3). Thus the shear again couple into the

bending behavior.
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Applying the egquilibrium condition on Equation (8.11)

yields the optimal assumed stress modes.

freo
pg =0©

(9.12)

"

Ox

Fr * FaY
Bz + Bs X

Oy = s

Cy

Since these stress modes are not invariant with respect to
the reference coordinates, local axes should be used.
Forcing invariance through the use of complete
polynomial([16] diminishes the true advantage of the hybrid
formulation for the general purpose elements.

At this stage the reason why the selective
integration techniqgue and the Wilson's incompatible
element reduce to hybrid element for the rectangular
geometry is clear. In the selective integration
technigue, by using lower order integration for U;y in
 Equation (B8.3), the shear strain reduces to ¥, = %3+ &%,
thereby retaining the pure bending behavior. Also for the
Wilson's element in rectangular geometry, the
contributions from A3 and Az support the pure bending
behavior exactly. Furthermore, since unique solution
exists for the governing equations of elasticity, the

stiffness matrix must be identical for all these cases.
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8.2 8-NODE QUADRATIC PLANE ELEMENTS

n
4 7 3
® >
1 P }
I 5 2

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For the 8-node plane element,

(2.13)
i i'("'fzg)(""’);'?)"f‘-?*717“) i=1,2,3 4

LA e )

5 -3+ 1,17) iz 5,7

7

1 =990 +73;3) ;= &8

The displacement modes are

U=z a,+ayy+ o3n + oy Tq +ag §2 o+ gt u.,'g‘7+ xg§1?

(2. 14)
Vo2 Xgte, X, )t ¥F ¢ X3 }1 + “14-7’.* s }-17 *q“}”z
The strain modes,

€y = O t oGy X + 2, Y t+ X, o xP +2Xxy
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Xxy = (Kg+ Ap) + (K T 20¢,3) X (K +2X)Y

+ (2xg + 2x,g) Xy + xq X% & Ky y?

From here on the purpose for the isolation of

the strain
modes is to systematically construct the hybrid elements.

HYBRID ELEMENT

Following the procedure described previously for

the
linear

elements, return to Equation (8.15) and eliminate
artificial coupling and redundancy.

Ox = S+ faX o) * fuxy + B3V’

Cy

16)
/31 +,35K +PsY *F""Y "’/5'4’(& (3.1

O"Y

Ps * BeX *BqY tR2XY '_’/3:'5 "2”‘/5:6 y*

The equilibrium equation yields following

constraints on
the ﬂ"s

Pa * fqa =°
Pz * fs =° (8.17)
/ﬂz =0
F%o + 2f£6:=o
/Bu +'2ﬁ”$ =0

Applying the constraints and shifting

the
numbers yields following stress modes.

coefficient
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O = B + BaX *t B Y t Bgxy + Floyz
% = P * Bs % * B Y * fq Xy +/8,,xl (8.1%)
Oxy = ﬁs-,&] _,31)(-'3/68‘/"-;-’51;(‘

Since a minimum of 13 ﬂ's are required to obtain unique
solution and thus eliminate the zero-energy deformation
modes, two extra stress modes have to be included in the
Equation (8.18). Furthermore, for the general purpose
element, the two extra modes serve no purpose other than
the elimination of zero-energy deformation modes. As
before, the two modes are classified as the "nonsense"”
stress modes. With this in mind, all constraints imposed
by the governing equations can be relaxed for the
"nonsense” stress modes without loss of accuracy.

Two possible candidates, in view of numerical
integration and application of uncoupled stress

formulation, are
-3
Ox = fﬁz'J(Y

oy = Ais x*y

(®.18a)

These modes interact with Ey=x and €’=y to form non-zero
energy. For more in depth coverage refer to the

reference([10}.
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8.3 8-NODE LINEAR SOLID ELEMENTS

[
b}
1.7
6 :1 ’7
AT
~ 4
2 3

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For the 8-node solid element,

u = Ng (8.19)
N, =5 O=5D0-9,M0-3,3)

c=12,...,8B

s 2 /

The displacement modes are

U=z <, +&X ¥} + % +A, T +XgF7 ¢ cx"”»+d7'gr r Xg }'7T
V= Xgtd,3 ¢t “u']*"(tzf + X5 Tt Xia 17 +XsFT * Xy }’7r (?.l‘ia)

Wz ooyt ] +%e ] * X3 %z Fh + %2l T I+ X2y T

The strain modes,

Ex = dz+o(5y+o£7z+-¢x8yz
EY = d“ + O(,sx * d,4 z + dl‘ XZE (F' ZD)
EZ = O(zo + “217’ + d23x “* 0(24 Xy
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Txy = (gt )+ XX + X5y +(Ady+X5)2 + g X2 +tol i ¥z

VYZ (dlll'.“lq) * (d's*-dll) X + “'4_7 + 0(121 +d“ xy + 0(24)(2

Yy = (v Kig) + Xy X + (Xt )y + Xay 2 + 00y Xy oy, Y2

HYBRID ELEMENT

First eliminate the artificial coupling in the

equation (8.20).

6 =Bt BY + B + Big Y2

= + Bgx r 8, + Bao X

Gy B Az Ie z A z (?.2‘)

¢g=p3+,89x+/€,.7 +/g_,, Xy

Gy <y + fiyx + By + B XT ¢ fus¥R * g

Oyz = Bs *,8;47"'/5:-12 "/923"7 T Py X2 + fBaq X

Gazf +fsxtfigZ + gy + By V2 + L)

From equilibrium,

B +{sll =0
/‘B"'/sq =D (3.21)
Ais +fig =0

Baa = B2y = fas = Prs = Py =fy =0

Applying these constraints,

50



Oy = Fl *le‘l\/"Pnoz * ﬁl‘yz
Cy=P *Agx+pyZ2 + B, X2

Cz=F3 +faX Ffiay + Big XY (8.23)
0}y=ﬁ4 +fh32 + ﬂny 4-Fz°x
62 = Ps +Big X - B2 4f,Y

Gea=p¢ +fsY  “Pe® - fa X

From the three dimensionality of the element
construction, an additional step must be performed before
arriving at the final stress modes. By comparing the
Equation (8.23) with the Equation (8.20), the modes 1q ¢
Fu' andlﬁz, above are not represented as a possible
deformation under the isoparametric formulation. Thus,
these three additional ﬂ's must be set to zero. Note that
through the process of eliminating the artificial coupling
in the Equation (8.21), additional possible modes under
equilibrium are introduced. These p's do not contribute
in accordance with the deformation modes and thus should
be left out.

The resulting stress modes are

a
"

X ﬁl ’*1ﬁ77 + /ﬁoz + fﬂ"i
Bz * B3X + AuZ + B, x2
6 = B3 T Bax * AV + /glg Xy (?. 24)

9
!
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Cay = f4 + Pz
Cya Bs * P x
6, (gl * ,515 )’

xz

Recall from the Secti‘on 6 and the Figure 6.1 that /511‘ F‘_’ R
and lB,g are "nonsense” stress modes and the governing

equations can be relaxed for these terms.

UNCOUPLED STRESS HYBRID ELEMENT

— TTp —

In order to achieve fully equivalent element as the
previous hybrid element with stress assumption in Equation
(8.24) following uncoupled stress assumption must be used

for computationally efficient element with isotropic

material property.

G

x = Bit Bax + Byy +LyB + Bs XY rPRs Y2+ Byxz
6y = Pe+AaX v,y + B2+ fiaxy t fisV2* M xz
Oz :/3'5*/4'6"*/3'77 + fig 2 T fa Xy + faa Yz +,‘913X1'-
Gy = P2z t f23 2

vz = fay 4 fas (%2.25)
Cxe = Bay + Baq Y
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Proper p's can be eliminated or coupled directly by

choosing the R matrix according to

pr =0 (7 20)

The order of R matrix for the above stress assumption is
number of p's by 9. Thus additional inversion of (9x9)
matrix (Efgﬂg) will be required.

In the natural coordinate system of the element, the

stress assumption corresponding to Equation (8.25) is

n

Cx

BrrBaS e BN+ T +hs30t SIS+ A FT
Fr+BaF*fion *puT +Fa ] 3T+ Aa 5T
827 Bs * AT Bl +PeS* faF) *fuIT+ fu IT
Oy Paz + fa3y
52 = f24 * fas 3
T2 ® f2s ¥ f2r Y

Sy

(8. 26)

with u, as

Uy = 2, v A2y * AgT (8.27)
V'): >\4+)57*A‘$ '

Wy = 2, + 233 AT

"Note that if the element is rectangular, above stress
assumption reduces equivalently to Equation (8.33) since
the Jacobian is constant.

A large reduction in computional cost can be induced
by recognizing that the quadratic terms are the "nonsense”
stress modes and serve only to suppress the zero-energy

deformation modes. With this in mind a resulting stress
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assumption arrived is given below.

O = fi* B rFalpas + Fs (3975¢TT)
oy =Bs* BT A YT t fu (T7+9T+TFF)
Oz = A +/3’1.5"’18"7 +/8'*§ +/8'5(37+7I+}’T)
Gy = bie * By

(8. 23)
Oyz = e + Pu}
Gz = f2o T fhv7
With
u.a - Al
(8. 29
Wy s 23
Thus the order of (E?qu) is reduced to (3x3) and the

order of other matrices necessary for the stiffness matrix

generation have been correspondingly reduced.

— Thw—

Recall that for the anisotropic material law, 1in

order for

g =C¢t (2.5)

the constraints on € and £ are

C=Pg
- (7.29)
Pi=Ba=Py=P, = Pec=PF (7. 36a)
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A promising choice under this constraint for the stress

assumption is

0= A */8:.1";’7 * fa S *F‘(I'I 7% *37)
G= A By Bt AT e (370971 TF)
G: At PaTBn] BT tAs (374074 TS)
(%. 30)
0= B + AeT +/3"17 *F"Y +,3:°(}»7 NARSAS!
%:

Ba * B £ Baa] * faaT * fas (37497 +37)
Qa= By */9“'7*‘/9"7 + By T "/8“(37"7}'*}}’)

However, since the stress distribution in Equation (8.30)
may be too rigid, additional relaxation of the governing

equations may be necessary.
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8.4 20-NODE QUADRATIC SOLID ELEMENTS

s /6 8
i3 I
, %
14 in T 10
| ?J—"
8 4 /)l____il_y_'.z___ 4
- ]
| el .
2 10 3

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For 20-node s0lid elements,

u- g (2.31)
Nize FOeEDONUTLTIET 17,9+ T,3-2) i=y2,08
= 3 =¥ 0+ (1r5:5) | (=R, 1ss

= % (o) Qrg§) (03 ¥) £=10,12,14,16

= 3 (-1 0+53) O11) i =17,13,19,20

The displacement modes are

U=z ro, T+ XN+ T "°‘577*"‘a’)r*°"7?T*°‘s}‘+,<,7’+°<a,}"
TR IS o L I %y NPy L Ty oy Ti’]
+ g }7" + a(,z '}17Y +o(‘q7"rs + oo, Ta.s?

Ve ooy o+ o 4 «403-3;7 : (%. 32)

W'=¢X4'+ e q.¢i“<71§7

The breakdown of the corresponding strain modes are

included in the Appendix A.
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HYBRID ELEMENT

The procedure for the 20-node solid hybrid element
development is similar to 8=node sclid hybrid element.
The stress modes are given in the Appendix A. In the
final resulting assumed stress modes, Table A4, the
"nonsense” modes include all cubic stress terms. This is
consistent with the linear 8-node solid element where all
quadratic terms are the "nonsense"” modes. Furthermore,
this is mathematically consistent since with quadratic
displacement assumption, cubic stress modes does not
contribute to general convergence of the element. Recall
that both the stress and the displacement approximations
must be improved properly and simultaneously. Since the
accuracy of stresses from the displacements converge, at
best, in a quadratic order (Optimal Gauss Points([171), the
cubic terms are only used for suppressing the zero-energy

deformation modes.
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9. NUMERICAL EXAMPLES

The element nomenclature is given in the Appendix B
for gquick reference. In order to numerically support the
discussion in the previous sections, various samples of
stress assumptions have been implemented. However, bear
in mind that most of the numerical examples given are
carried out to provide a foundation for the inductive
process used in the previous sections.

All calculations for the numerical examples are dJdone
under double precision using Digital Vax 11/780 computer.
The Gaussian gquadrature order used for the numerical
integration correspond ¢to exact integration for each

element type.
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9.1 CANTILEVER BEAM USING SINGLE 4-NODE _PLANE
STRESS ELEMENT
Refer to the Figure 9.1 for the problem description

and geometry. The cantilever beam problem has been chosen

the purpose for

to depict the bending behavior. Since

illustrate the nature of the

this example is to

interaction of the stress modes, only single element mesh

is needed. The Poisson's ratio has been set to zero to

isolate the modes. The analytical solution is based wupon

The tip deflection and the

the Bernoulli beam theory.

different stress

maximum normal stress, O; , for the five

assumption is given in the Table 9.1.

TABLE 9.1. Cantilever beam using Single 4-node element.

ELEMENT Stie Tt paax
RP4A 5PA's .015 3000
RP4B 5P's .0012 0
RP4C 7P's .0011 226.3
RP4D 9P's .0011 222.2
RP4E 5P's .0012 0
DP4 (7T,) .00 222.2
Analytical .015 3000

The non-zero B's for each stress assumptions for the

cantilever beam bending are listed below.
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6; =/8| *ﬂ*y
RP4A oy =

Ox
RP4B

e |
G : A + sy
RP4D { = ©

RPAE

Note that only in the Element RP4A the pure bending
behavior is exactly modeled. Thus even in a complex mesh
model, the transmitted bending load to each element is
successfully modeled by the Element RP4A. In any complex
loading problem the bending locad will be present for many

elements.

The reason for the choice of other stress assumptions

are as follows:

RP4B - Sp case with zero-energy deformation mode

suppressed.
RP4C -~ Complete linear stress assumption with

equilibrium condition imposed.
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RP4D - Complete linear stress assumption.

RP4E - Alternate Sp case with equilibrium satisfied

As indicated by the results, if the corresponding stress
modes are available, the interaction between the stress
and strain modes will reintroduce the artificial coupling.
By using the minimum required number of ﬂ's, S in this
case, and choosing the stress modes in full recognition of
the strain modes, above interaction can be avoided.

The nature of the stiffness matrices for a square

element can be summarized by the examination of the trace.

TABLE 9.2. Trace of the stiffness matrix.

ELEMENT Trace = Z Eigenvalues
RP4A .3634x10°
RP4B .3223
RP4C .3727
RP4D .3956
RPAE .3152
DP4 (77p) .4615

The Element RP4E is most flexible element in sum, yet this

flexibility does not extend to the bending behavior.
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9.2 CANTILEVER BEAM USING SINGLE B8-NODE PLANE

ESS ELEMENT

Identical problem shown in the Figure 9.1 is solved
using single 8-node plane stress element. Recall that
during the process of the derivation of the hybrid 8=node
plane element, the strain modes from the displacement
modes, Equation (8.15), has been shown to <contain the
bending modes, &4 and «,,. Thus any stress assumption with
bending modes must give exact solution. The tip

deflection results are given in the Table 9.3.

TABLE 9.3. Tip deflection - Cantilever Beam Problem.

ELEMENT § TIP.
DP8 .0137
RP8A .015
RP8B .015
RP8C .015
RP8D .015
RPBE .015
RP8BF .015

Analytical .015

The assumed displacement element, DP8, did not give the
exact solution due to the interaction of Q% and 4 term in
the Equation (8.15). As a point of interest, the trace of
the stiffness matrix from the Elements RP8S8E and RP8F is

identical.
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9.3 CURVED CANTILEVER BEAM USING 8-NODE_PLANE

STRESS ELEMENT

The curved cantilever beam problem, Figure 9.2, has
been motivated by Spilker,Maskeri, and Kania[16]. In the
article, to achieve invariance under coordinate rotation
the stress modes are expanded to full cubic. In order to
further reduce the number of /9 *s, the compatibility
condition is imposed on the stress. In Appendix B, this
element is named RP8D. The Elements DP8, RP8A, RPBB, and
RP8C are used for comparison.

The tip deflection results are shown in the Figure
9.3. The analytical solution has been obtained from
Timoshenko and Goodier({18]. Note that this solution is
approximate and thus the percent error only has an
approximate meaning.

The stress results for the five element mesh are
plotted on the Figure 9.4. The results are obtained at
various angles for r=11.58. Specifically, these points
correspond to the optimal stress points. Since the stress
‘distributions obtained from the Elements RPS8A, RP8B, and
RP8C are close, only the RPBA stress distribution is
shown.

Overall results indicate that the Hybrid formulation
converges much faster then the assumed displacement
formulation in the curved beam analysis. However, between

the Hybrid elements there is no consistant way to evaluate
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which element has the best result. To eliminate the
occillation of the Element RP8BA stress distribution two
additional analyis should be made.
1) Use local coordinate for RP8A, RP8B, RP8C Elements.
2) Develop an element using the natural coordinate

system for the stress modes.
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9.4 CANTILEVER BEAM USING 8-NODE SOLID ELEMENT

The cantilevered beam problem, Figure 9.5, is solved
using several mesh arrangements, Figure 9.6. A moment,
Load Case I, and a shear, Load Case 1II, loadings are
considered. The analytical solution 1is based upon the
Bernoulli beam theory. The ¢tip deflection results are
given in the Tables 9.4 and 9.5.

In a rectangular solid mesh configuration, the tip
deflection results demonstrate that the Elements RUS8A and
RUSS8B contains the pure bending modes induced by the
moment couple in the Load Case I. As expected, the
results from the Elements RUS8D and RUSB8E are similar to
the result from the assumed displacement element DS8.
This is a further evidence that inéluéion of unnecessary
P's simply reduces the hybrid element behavior similar to
the assumed displacement element.

In order to assess the rate of degredation of
accuracy as ﬁhe elements are skewed, the cantilevered beam

problem is repeated by steadily increasing the distortion.

"The result from the distortion sensitivity analysis of the

hybrid element, RUS8S8A, is plotted on the Figure 9.7. As
shown, the Element RUSS8A has a high degredation rate
initially and then effectively reduces to zero after b/a =
2. An interesting point to consider is that the value of
the tip deflection beyond b/a = 2 is approximately the

same as the result obtained from the assumed displacement
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TABLE 9.4. Tip Deflection
LOAD CASE I
ELEMENT MESH1 MESH2 MESH3 MESH4 MESH5
Ds8 9.00 27.78 20.27 23.52 18.81
RUS8A 100 100 51.1 46.0 25.8
RUSSB 100 100 51.1 43.5 25.8
RUS8D 9,26 30.2 22.5 23.0 16.6
RUSSE 9.26 30.2 22.5 23.3 16.7
Analytical 100 100 100 100 100
LOAD CASE II
ELEMENT MESH1 MESH2 MESH3 MESH4 MESHS
Ds8 9.26 28.50 22.81 24.08 20.77
RUS8A 77.5 96.0 58.9 55.2 40.1
RUSSB 77.5 96.0 58.9 53.3 40.1
RUS8D 9.44 30.8 23.8 25.4 20.8
RUSS8E 9.44 30.8 23.8 25.7 20.9
Analytical 100 100 100 100 100
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element, DS8. Basically, the distortion reintroduces the
artificial coupling into the stress modes. This
observation provides a clue to develop a more effective
element with less sensitivity to distortion. The tip
deflection result for b/a = 99 is 34.9 which further
supports that the accuracy of the hybrid element will be
equal or greater then the assumed displacement element no
matter how large the distortion becomes for the
cantilevered beam problem.

Backtracking for a moment, re-examine the Table 9.4
and 9.5 comparing the Elements RUS8A and RUSS8B. Recall
that these two elements employ similar assumed stress
modes. Only difference being that one uses the xyz
coordinates and the other the natural coordinates. The
comparison of these elements indicate further modification
is necessary to achieve distortion insensitive element
then just expressing the stress modes in the natural
coordinate system. Above remark seems reasonable since
the mapping. a linear mode from xyz coordinate to the
natural coordinate system yields also a linear mode. As a
point for future research, the mechanics of distortion
should be studied in view of the <coupling between the
stress modes.

In any structural problems, a reference coordinate
system must be defined to 1locate each point in the
volumetric space. Thus next step of analysis studies the

solution response of the cantilever beam problem under
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concentrated tip load as the reference coordinates are
rotated. Since the stress assumption for the Elements
RUSSB8A and RUS8B are not a complete polynomial, the
invariance condition is not automatically satisfied.
Before presenting the results, note that an alternate way
to establish the reference coordinate invariance is to use
a local coordinate system for each element.

The results from the rotation of the reference frame
is shown 1in the Figure 9.8. The Element RUSB8A using the
Cartesian coordinate system for the stress modes contains
zero-energy deformation modes at e = 45°. This is
verified by eigenvalue analysis of the stiffness matrix
generated at this angle. Furthermore, as the angle
approaches the value of 45° the element becomes more and
more flexible till it becomes unstable at © = 45°,
However, by the use of the natural coordinate system,
Element RUS8B, eliminates this unstable mode. Notice that
the variation of the result remains negligible for 8<
30°.

Before the reader becomes too astounded by above
results, several comforting observations are in order. In
most engineering problems, the reference coordinate chosen
coincide with the physical structural geometry which
eliminates the possibility of the complete structural
instability. To clarify, due to the boundary conditions

and the assembly with stable elements, the total structure

will be stable even when part of the mesh is parallel with
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45° line. Another strategy to eliminate the possibility
of the unstable mode is partially distorting the element
in the same plane of the expected angle e . Following

result demonstrates this numerically.

TABLE 9.5. Tip deflection, Load Case II at ¢ =459,

ELEMENT MESH2 MESH3 MESH4
13 5

RUS8A -.599x10 ~-.240x10 132

RUSS8B 159 143 129

The angle & 1lies in the x-y plane, Figure 9.5. Since the
Mesh 4 is distorted in the x-y plane, the unstable mode is
partially dampened. Above analysis also holds for the
reduced integration technique. Same approach can be used
to employ elements with zero-energy deformation modes.

As a final note, for the gquadratic elements, since
the stress assumption is complete to the linear order, no
instability will arise for the bending problem. Overall,
the remedy to introduce invariance with respect to the
reference frame should be made by wusing the local
coordinate system. The problem of arbitrary reference
coordinate system should not enter into the element

development. Combat coordinates with coordinates.
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9.5 CIRCULAR HOLE IN AN INFINITE STRIP USING 8-NODE

SOLID ELEMENT

The model for the circular hole in an infinite strip
is shown in the Figure 9.9. The Figure 9.10 provide a
plane view of the four configurations of mesh using 8-node
solid elements. Although, due to the curved geometry of
the hole, higher order element should be used, this
problem nicely demonstrates the limitations of the hybrid
elements developed for general purpose applications.
Furthermore, this problem establishes the groundwork for
the discussion of the special purpose elements presented
in the next section.

The result from the displacement convergence study is
given in Figure 9.11. The stress distribution along x = 0
for the four mesh configurations are provided 1in Figures
9,12 to 9.15., The elements used in the analysis are the
Elements DS8 and RUSBA. Recall that RUS8B8A can model Dpure
bending exactly as demonstrated in the subsection 9.4.
Since the results from the Element RUSSB8B with stress
assumption in the natural coordinate system are very close
to the results from the Element RUSBA, these results are
omitted.

In the overall sense the difference between the
results from Element DSB8 and RUSBA are not overly
dramatic. In the development of the 8=-node solid

elements, the assumed stress modes clearly show that the
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advantage of the hybrid 8-node over the agssumed
displacement 8-node is the bending behavior. In any other
type of mode excitation, the convergence of the 8-node
solids wusing either element will be similar. However,
note that this characteristic is purposely imposed in
order to construct a general purpose element.

In the stress distribution obtained, the results from
the assumed displacement element are actually little more
accurate then the result from the hybrid element. The
only way this can be explained is that the artificially
coupled terms inhence the accuracy for the class of
problems exemplified by the circular hole problem. From a
logical extension to the above conclusion, introducing
more descriptive modes will increase the accuracy for the
corresponding class of problems, i.e. special purpose.

Further discussion is reserved for the next section.
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9.6 HOLLOW SPHERE UNDER TEMPERATURE DISTRIBUTION

USING 20-NODE SOLID ELEMENT

The problem chosen to evaluate the 20-node solid
elements is the hollow sphere under temperature
distribution, Figure 9.16. Six element mesh is adequate
to study the relaxation and symmetry condition on the
cubic terms. Six diffenent stress assumptions are used
for direct comparison. Element used in this analysis are

listed below with comment for their choice.

ASSUMED DISPLACEMENT ELEMENT

DS20

HYBRID ELEMENTS

RS20A - Equilibrium relaxed for
all cubic stress modes.
Symmetry Maintained.
RS20B - Equilibrium relaxed for only O, =x3, Cy =y3,
and G, :--z3 term.
Symmetry Maintained.
RS20C - Equilibrium imposed in unsymmetric fashion.
RS20D - Equilibrium relaxed for both gquadratic and

cubic stress modes.

Symmetry Maintained.
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RS20E - Alternate stress modes used to complete the
stress assumption, 57 p 's.
Equilibrium relaxed for
all cubic stress modes.

Symmetry Maintained.

RS20F - Also an alternate form, 54 ﬁ ‘g,
Equilibrium relaxed for
all cubic stress modes.

Symmetry Maintained.

The analytical solution for the hollow sphere problem
is obtained from Timoshenko and Goodier{18)]. A comparison
of the radial displacement distribution obtained by
Elements DS20 and RS20A is shown in Figure 9.17. The
results are both very accurate when compared with the
analytical solution. Again for the tangental stress
distribution result, Figure 9.18, both elements provide
accurate solutions. This is expected since the rate of
curvature change 1is slow for the tangental stress
distribution. Thus ¢the excitation of the higher order
stress modes are correspondingly small.

The radial stress distribution provide high enough
rate of curvature change to excite the higher order stress
modes in order to distinguish each element performance.
The Figure 9.19 compares the radial stress distributions

obtained from the assumed displacement element, DS20, and
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the hybrid element, RS20A. In general, a significant
disparity of results, exemplified in Figure 9.19, between

7T} and 7TQ element will be observed for any problem
with stress distribution that has a high rate of curvature
change. In another words, when the guadratic stress modes
are excited disparity between the two formulation will
arise. Above remark is a simple extension of bending
problem, linear mode excitation, using B8-node solid
element.

The radial stress distribution comparison between
hybrid elements with various other stress assumptions are
shown in Figures 9.20 to 9.23. The results indicate that
the equilibrium can be relaxed for all cubic stress modes
and the symmetry condition should be maintained. Also,
the elements RS20A, RS20E, and RS20F gave almost identical
stress distributions. Overall, the hollow sphere problem
numerically supports the discussions on the previous

sections.
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9.7 CANTILEVERED BEAM USING 20-NODE SOLID ELEMENTS

In a recent article by Spilker and Singh{19], a
hybrid element with complete cubic assumed stress
distribution satisfying both equilibrium and compatibility
conditions is presented. This element is named RS20G
(refer to Appendix B). An example given is a cantilevered
beam problem with distributed end shear loading. The
normal and shear stress distribution results are given in
Figures 9.24 and 9.25, respectively. The results from all
three elements, DS20, RS20A, and RS20G, are comparable as
expected from previous beam bending analysis.

The purpose for constructing the Element RS20G, by
Spilker and Singh, is to implement element invariance with
respect to the reference coordinate. The invariance is
accomplished by expanding the stress into full cubic
distribution. The stress compatibility condition had to
be used to reduce the number of P 's to 69. This is
compared to 54 ﬁ 's used for the Element RS20A.

Under a close examination, several severe limitations
on the Element RS20G restrict its applicability. First,
the element is limited to isotropic material only. Also,
excessive computational cost prohiﬁit practical
application. Uncoupled stress formulation cannot be used
to reduce cost since 51 constraints are necessary to
reduce full cubic, 120 /5'5, to 69 P's. A lesson learned
from this example is to use local coordinate system to

achieve element invariance.
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9.8 HU-WASHIZU ELEMENT EVALUATION

In order to numerically compare the difference in the

solution between I[R and 7T;w when the stress-strain

relation is relaxed, two previous problems, given in the

subsections 9.6 and 9.7, are solved using similar P

matrix. The elements used are 20-node solid elements

RS20A and HS20A (Appendix B).
For the cantilevered beam problem, the tip deflection
results are given in Table 9.6.

TABLE 9.6. Tip deflection of cantilevered beam.

identical up

graphically.

constant

# of Elements
in the mesh 7‘-? , 0S20 | Tz, RS20 mw, HS20A
- - -2
1 -.956'&10z —1.05x10z -1.05%10
-1.08 -1.09 -1.09
4 -1.10 -1.11 -1.11
-2 )
S‘analytical = ~1.132x10 (Transverse shear included)

are

has a linear distribution

similar

to 3 digits.

The reason the

results

in

the

distribution in the shear stress.

of the stress assumptions for these two elements,

between

normal

Also the shear stress results between RS20A and HS20A

Figure 9.26 demonstrates this

is that the cantilevered beam problem

stress

RS20A

In comparison
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B, showes that for the constant and linear terms, the
equivalence conditions are identically satisfied.

The previous discussion on the Hu-Washizu formulation
asserted that the stress-strain relation <can only be
relaxed for the cubic "nonsense"” stress modes. To
illustrate the consequence when the stress-strain relation
is also relaxed for the quadratic modes, the hollow sphere
problem is solved using Element HS20A. Recall that the
condition required to satisfy the stress=-strain relation
constrains the P.'s to be equal. The Figure 9.27 clearly
demonstrates the difference between the two formulations.
Since the stress-strain relation for the quadratic terms

for Element HS20A are not satisfied, the result is poor.
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9.9 CPU TIME FOR STIFFNESS MATRIX GENERATION OF

8=-NODE SOLID ELEMENTS

To justify the use of the hybrid elements for
practical industrial application, normalized CPU time for
stiffness matrix generation of 8-node solid elements are

provided in Table 9.7,

TABLE 9.7. Normalized CPU time for stiffness matrix

generation of 8-node solid elements.

DS8 - Assumed Displacement Method 1

RS8A - Original Hybrid Stress Method 1.62
RUSBA - Uncoupled Stress Method 0.96
RUSBC =~ Uncoupled Stress Method 0.60

Note that all three hybrid elements, RS8A, RUSS8A, and
RUS8BC, provide exact pure bending behavior. Thus by using
the flexibility allowed in the wuncoupled stress method,
the economic roadblock on the hybrid elements can be

easily bypassed.
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10. SPECIAL PURPOSE ELEMENTS

The special purpose elements, as differentiated from
the general purpose elements, are tailored for a
restricted <class of problems. By restriction, the
convergence using the special purpose elements can be
significantly increased. The aim of the present
discussion is to direct future research in the special
purpose elements.

In the previous sections, much emphasis is placed on
the examination of both displacement and stress modes in
conjunction. The resulting combinations that satisfy the
governing eguations establish the accuracy of each
element. If the exact mode is included in the assumed
modes, only a single element is necessary to obtain the
exact solution. If otherwise, the convergence depends on
the ability of a 1linear <combination of modes to
approximate the solution.

Inevitably, the next generation of elements will
involve a joint effort of theoretical solid mechanics and
finite element strategy. Expanding, as Wilson attempted
to purposely insert bending modes, the modes obtained from
analytical means will be implemented into the assumed
modes. Observe that the displacement and stress modes
obtained analytically for a sepecific problem satisfy the
governing egquations a priori. Furthermore, for a similar

class of problems, this mode will be highly -excited.
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Overall, above technique simulates the Eigenmode expansion
and series expansion used for many years to solve
structural problems for the finite element method.

The desirability is established and thus the next
gquestion 1is the feasibility. To begin with, the use of
the hybrid formulation provides a convenient method to
implement any desired modes. By examining, step by step,
the construction of hybrid element, the only roadblock

present is the numerical integration of the elementary

functions such as the trigonometric and exponential
functions. A brute force solution is integrating each
term analytically. A tremendous amount of necessary

algebra should be done wusing an algebraic manipulator.
Other solutions will be found as the research evolve in

the development of special purpose elements.
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11. CONCLUSION

The key to unlocking the mystery of the Hybrid stress
formulation 1is to understand the interaction of the
assumed displacement and stress distribution. Using the
isoparametric method as the basis for the assumed
displacement, a consistent stress distribution <can be
obtained. In practical engineering applications, each
element 1s employed to cover a "finite" domain.
Therefore, the mathematical proofs on convergence, derived
on the assumption of the 1limiting process, have only
restricted practicality. The bridge to fill the gap
between mathematical abstraction and practical reality of
finite element method is the application of the physics
involved in continuum mechanics. In this context, all of
the painstaking development of analytical solution can be
applied in the finite element method. Recognize that the
finite element method is a numerical method operating on
the parameters provided through the assumed variable
distributions.

In the discussion of general purpose elements, the
Statement of Equivalence convey that if the assumed
displacement, obtained through isoparametric formulation,
is complete to order P, then the Hybrid and the assumed
displacement element stress accuracy is equivalent to
order {(P=-1). The actual superiority of the hybrid element

will be visible for the problems requiring the stress
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modes represented in the order P. This is demonstrated by
constant stress problem verses cantilever beam problem for
8-node solid element (P=1).

In sum, the most attractive attribute of the hybrid
stress formulation has not been yet fully exploited. The
flexibility to easily include assumed modes obtained
through analytical methods differentiates hybrid elements
from the assumed displacement elements. Always remember
that flexibility is an attribute when applied with

understanding.
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FIGURE 6.1

Possible deflection mode for 8-node solid
requirina a "nonsense" stress term (in this
case 9x = xy) to nrevent such a zero-energy
deformation mode [15].
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P u=0

3’ u=v=0
P = 1000
E =10
N

FIGURE 9.1 Cantilever beam using single 4-node nlane
stress element.
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v o= r.=1
3
F] = 270.3
F2 = 56.3 Total Moment = 600
F3 = 326.6
MESH 1 =16 DOF ( 1 element)
MESH 2 = 26 ( 2 elements)
MESH 3 = 36 ( 3 elements)
MESH 4 = 46 ( 4 elements)
MESH 5 = 56 ( 5 elements)

FIGURE 9.2 Curved cantilevered beam using 8-node plane
stress elements.
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b u=0 PII= 150
$  u=w=0
43 u=v=w=0

E = 1500

vy =0.25

FIGURE 9.5 Cantilever beam using 8-node solid elements.
(Single element mesh - MESH 1)
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FIGURE 9.6 Two element mesh arrangements.
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FIGURE 9.9 Circular hole in an infinite strip.
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MESH 1
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/
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”d MESH 4

FIGURE 9.10 Plane view of the mesh configurations.
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6-ELEMENT MESH
TEMPERATURE DISTRIBUTION

= Jod
T= S:a(b/R'l)
2 cm.
8 cm.

100°C
1.22x107°/°C

mé g oo

.3
2.1x107 Nt/cm?

FIGURE 9.16 Hollow sphere under temperature distribution
using 20-node solid elements.
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APPENDIX A

TABLE Al. Strain modes from assumed displacement modes.
Ex k) s Y X5 Z | RxXpX |2, Xy |2 0t,3 X2Z| ,4y%
Ey a3
€2 SN
Ty || Xz +Sgm| o5 X o, x* 2, Y%
Tyz || Xaa1243
ng X4gt X2 xq X ’(szz
2
dl; Z Xy b4 ZK,ZXYZ e, qyzz “:ozzr
d,‘] XZ K|B Xzz 2‘,, XVZ 0‘25 zzK “15 Y
’TRYE
2 xg A2 o, XY |ot;g XY o9 Y3X |2 %72
F
X3, X X X3y YZ| X34 ¥YX| X3¢ z? K39 XZ 0(33)(12 20¢39XY2 °(4°Z‘X
2 Az XY A3q V2 K39 YZ |29 x72| Xaq )’z | x4,27r
2
xa ¥ 234 YZ | atyy XY | X3gay | atsq ¥ |00y, XvZ
g ¥ | Xag X |2Xgo 2| Xsax?| Hsz Y ? | extspxz| 205, ¥Z | X5y XY
dq,‘ Z ZKSSYZ x 54 Z1 Xs 7 XZ
q47z 2«52'{2 “5522' Xoy Yz
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TABLE Al. Continued.
Ex
€y
€2 Nsp X'y | Foq yix | 2 g2y
Ty 2 |2ey |2ctavz|a,, 22
Wz || ovey 472 | 20059 22| x40 7%
Txz ||R%s5 #72| osq Y2z 4, 227 | ¢y ~<3y? |24, vz
Kaq Z | 2oy X |2¢3302 ) oas 2*
Hzq9 X dgq_xz 2 Kys Xl 2oy, 2 | Hys X 2a4n Y o x2
%%s Y X, Xy
2 olsy¥x
g V2|20t 2 2 X49 X
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TABLE A2.

After elimination of the Artificial Coupling.

Ox Oy C, Oxy Ovz | Oz«
Consr.|| A A2 A3 As As fe
X A7 Fe Ao Ao Fu fra
Y | As | B | As | Bre | A | Pz
Z Big Bze /2, Baz | L2z | fzs
XY /525 Ba¢ P27 g Az29 | Fao
YZ A3, Az | Pss Bze | Lxs | Bs¢
RZ || B3 | sz | Baa | Bso | Aar | sz
X2 Baz | Bas | Pas | Pec | Aoy
" | s Por | o | Aot | foa
z* || Bss | Bsy Pss | Bss | Asv
XYZ ,353 Bsq Ao Ber | Bez | Ses
Xy? lakis A7 | Az
x*y y-12 Bes | Pes
Yz* A79 Azo A
Yz | A7 A4 s
xz? B¢ 1 Bar | fre
x*Z B ez | Bes
X3
\/3
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TABLE A3.

Equilibrium applied.

Ox Oy | G Oxy Ozx
Consr. || A, Bz | Ba | As Ae
X /‘97 Bs /5‘? /g/o V-1
Y Az Y- Lis -7 Aig
Z Aig Bzo (B Fr| A Fr°Fi
XY B2z | Pas Pzaq Pag
YZ || B2y | Bzs | P2q Az V-tY)
AZ || Az Pz | Bas | Ass
x* Azr | Bax |-lo-t F-frs
YE | Ao B |La-Fau|foe-far| faz
' || As | Ae frs  |Far-2e|-Fae-finr
XYZ | P4 P Fss
Xy? Pss
Xy A4 4 Ase
Yz* SBs7 ~faé -4,
Yzz /gsq /355
Xz Ps¢ '
X’z fos: Asz
X3
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When the Table A4 is compared to the Table A1, the
stress modes ﬁsa’ /352, and ,35, are not present. Thus these
modes are due to the process of decoupling the stress modes.
Furthermore, the presence of ﬁ“, A“, and ﬁ“.are redundant
and should be removed. In the final form of the stress
assumption, Table A4, the equilibrium condition is relaxed

for the cubic terms. Also for convenience, the numbering

3 3 3

scheme has been changed. The x7, ¥, and z° terms are
chosen to eliminate the additional zero—-energy deformation

modes.
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TABLE A4.

Final form with equilibrium for cubic terms relaxed.

| %% Sy | C: Oxy | Ovz | Tz |
Consr.|| A B2 A Ba A V-
X NAButa| Bo | B | Bs | Bic | Aaq
Y A1 |BsBg| Biz | Bra | Fir | Bae
Z || A Bio |-Arhe| Fis | Ais | Fa
XY || B2z | B2z | Ase Aza | Fa
YZ [ B2z | B2z | Bsx | Aa- Az
XZ || Bes | Bas | Aas | Baz | Pao
x* Bro | Fes |-Fo-fae ss- far
Y2 Aes By |-far-f |-
z* Ba¢ Bsi1 2 -far —/4_;3_4-/;,_-,
XYZ || By | Beo | A5
Xy* 2y
X%y ‘i R
YZ2 || s
Y2z || Aas
xz* fas
x‘z Bag
x3 I Bs.
Y3 Ass
z3 e
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APPENDIX B. ELEMENT NOMENCLATURE

-=-- ASSUMED DISPLACEMENT FORMULATION =---

D - Assumed Displacement
P - Plane Stress
S - Soliad

# - Number of Nodes

DP4 - 4-Node Plane Stress Element
DP8 - 8-Node Plane Stress Element
DS8 - 8-Node Solid Element

DS20 - 20=-Node So0lid Element

R - T

B - Thiw

U - Uncouple (Blank for Coupled)
P - Plane Stress

§ - Solid

# - Number of Nodes

A,B,C,ee0 Assumed Stress Version
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4-Node Plane Stress Elements

RP48

RP4D

K-l

Ox '/gl +/€4Y
Oy = B2 ¥+ BsX
Oy = S
Ox = B

Oy = B2
0;7-:#3*./54" +/KSY

AL
h

/gn*VBQY ’f& X
G} :1331-ﬁkx +/g,y
G;7=,Bs"f%'x"/3‘y

02 =/& ’ﬁix *VB;Y
oy = Ba+pBsx *peY
Oy = frtPex+fq)

=Rt BaX
Oy = Ba + ,Ssy
%= fo - Pay - Bsx
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Ox Gy Oxy

Const.)l A B¢ An

X Aia A+ |-fis

Y Bz Fiz | ~Aa
XY#‘ £ | P

X* £y |-% Ao
Y* | As "z Fe
XY*| As

XY As

X3
Y’

Ox Ov | Oxv J

Const £, Be | Bu
X Pz | A |-4s

Y “ Az Ais | -Aia
XY | 8s | 4o

X* Be |-% Ao
Y| As "z P4
XY* |

Xy

X2 1 As

Y?® Fe

119

8-Node Plane Stress

Elements

RP8A - Delete circled terms.
(Equation 8.22)

RP8B - All terms included.

RP8C - Alternate version
of RPS8A.



Ox Cy Oxvy
Const.l| A, J- Bs
X WA | AP |-
Y Az Az | -Ae¢
XY 1242 | 24 | -2/,
X* 0 A P2, A,
Yl e | B [-m
XYzﬂsﬁm 3812 | “38,
XY || 345 | 245 |- 342
X2 | A= |20, A
\/3 “2B5hs| B -1
Ox Cy Oxy

Const| £, B¢ | A

X | & [ 6 | 5

\{' ' f?3 Ae /533
XY | B+ | £a

x? Aio

Y2 A=

Xy?

Xy

NE

3

120

RP8D - Complete Cubic
Equilibrium and
Compatibility impose

(Ref. [16])

RPBE - Stress assumption
to only suppress kinematic
modes without regards to
equilibrium.



RP8F - Complete quadratic, ignores equilibrium.

Ox Cy Oxy
Const|| A B2 | Ais
X Bz | Ax A

Y A3 Aa Ais
XY | A4 B | B
X* Bs A A
YZ /gé’ /9:7. Az
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8-Node Solid Hybrid Elements

*

Equilibrium condition 1is fully satisfied

unless
otherwise indicated.
RS8A
G, = F, + ﬁ,Y * ﬁmi *FU b
°~Y = ﬂl + F’x + ﬂ"Z +'3|7 Xz
0;,= 8, + x'*FuY + Prg XY
2= Byt fq A (9.24)

oy Ps * P32
Ora® Bs + PiaX
Oz~ fs + Bs Y

RUSBA - 9 Constraints on ﬁ's from Equilibrium Condition.

q,

x

= ﬂ,+,€2x+133y +ﬁ+2*,€5x)' +/B‘Y2 +,€-,x;_'-

Oy = Bp+Royx + By * B2 + B2 Xy +Pis Y2 *fiaxz
Cr = Bis tBux * Pl +BisZ * Buaxy +Ba Y2 + Lo x2

Q%v= P2 + pa3®
62 Pas + Bas X (8.25)
Gz = /826 + ﬂzv Y

* Note that RS8A and RUS8A are equivalent element with different
programming algorythm introduced in the uncoupled stress formulation.
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RUS8BB - 9 Constraints.

Ge= A+ B Pt PSS+ BT BulT + 11T
Sy = Bg + ByT+ ﬁ.o')+!3n¥*-/€.z}7+ﬁ|37§+,3:+7§'
6z= /315*,314’5*'/8'77*/8'?.{* Aia 317 */Bzo7r*'pz. IT

Ve Baa * B3
6;;’#:.44»/3255 (3-2‘)

Oz = Bag +£27 7

*RUS8B is equivalent to RUS8A for rectangular elements.

RUS8C - 3 Constraints.

So= Bis A fa)* faS < A (370 7T +TT)
6y = Bs+ BT+ + AT 1R (39 +97+3%)
5= Anm Baf * A3t AT fis (37 ¢ 9T + FT)
Cry = Bisc + BT
Oz> fig + Pa T (8.28)
Gn=ﬁgo +/€"'7

*RUS8BC - Equilibrium relaxed for quadratic terms.
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RUS8D - 9 Constraints.

Cx= By *hax 3y + By 2
Sy=FBs + fsx + 17 + B, 2
Gz = Fﬁ *lglox +F'ly +ﬁ|zz

Oy = Pia+ WXt Pisy xR efigyze X2t faxts Byt
0;.;= ,an*ﬂszeﬁny*Fuz *ﬂstZ*ﬂuxy"/gr’yz",gZ?zL
Oz = P2q *RwX By Y + PraZ + Bsa xy +IQ34Y-2+193521+,£3‘ x®

RUSBE - 9 Constraints.

Pishax ~fayefaz+foxy+ fiyz + By Xz
B + qu +/Q‘°y A2 "ﬁn.xy t FuYE-"’/@u.‘L%
G = F'S"'/eux +A77+F|32 "’ﬁnxy + ﬂza)’i-"'/?z.xi&

2.9

Qy= Baz + o3 ¥« BraY * Bag 2
%= b ¥ fagx + BagY + fog 2
Cafse + B3 X *Pry +A, 2
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20-Node Solid Hybrid Elements

Ox Cy Cy Oxy Ovz Czx _

Cownst.|| A Bz A3 Fa Bs A

X NBsPul Ba | Au Bis | B | A
Y Br | Lsthe| Pz | B | Bn | Fao
Z Ay Lo |7BrPe| FPis Aig | A=
XY Pza | Pzs | B3a Aze | B+
YZ || Azs | Pzs | £33 £ Fa2
XZ Baa | SBa2q V-t £z | Lo

X2 Fso | Bss [Crte (%)
Y2 | £ o (KoK 2)

z? Bzs | Ba <"%‘" z”> <F3%£‘">
XYZ || Fea | PBso | Psi

XY? F42

x*y Pag [-4]
Yz? S+3

Yz || fua [

xz? Fas ‘ [-%]
X'z B¢ DELETE: [ +[ 1| Rs20A
x3 || Bse © | Rs208
Y3 Ps3 none | RS20C
z3 B O+ 1+O)| RS20D
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=!L°;& Ov | C: Oxy | Ovz | Oy
Consr. Ba B By Bs Ae
X NAPuPu| Aa A Ais Bic | Pia
Y Bz Bl Fia Bia | Fir | Bzo
z Bo |Butfa| Bs | As | Fa
XY Baz | sz Pzq | A
1Z Bz JERY L3 a2z
XZ Pzq £F3a £} Fao
X? £3o Pis —/fzz.v -foe s A2
| s R R
z? A1 -/ia_:-é:_a -/f_?./f,i_,
XYZ Bso | Asi R
Sall W2 Asq
X'y T FPss | Pss
2’
Yz | Bea
xzi}F Bas
Xz Bac
x’ DELETE:
Y? I none | RS20E
z> O | Rseor
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RS206 (Ref. [191)

Oee =B1+Ba2x +Byy +Baz +1/2(y‘—-x’);3,,+1/2A[—y’—u’+(1+,\)z’151,
+1/22(1 —A)[—(1+A’)y‘-}(1 A%z )8+ 1/(1 =) y* = (1 =A)z*1Bas
+1/Aly = 238+ 1/A(1=AN[(1+A%)y? = (1 -11)z%)B23 + Baaxy + Basxz + Boyz
+Bs (=2 /3+(1+ )y’ x)+Bal-2 /3 +(A + 1)y’x]+.B4;[y’—322y]

i+
3y?s (A 1)

+Bu [Z T4 o1 ] + Bse[—2xyz]+ Bel-2xyz)+Bse/2[-xy + z%y]

(A%+1)
A-1

+Bss[-xy +2%y)+ Bsa/2(~xz + y’z]+ﬁu[-x’z -y’z ] +Basl-3Ay’x]

¢ Bl =30y 51+ Busl=y' + £15)4+ B Yz g | + Bul3ly’e]

)zz"] +B’°['(,\3j1) "z’] +B"[(A2f1> ‘zy]

1
2(1-2)

. A
+3so[-Ay?z]+3u["(A 1

(257 = (1 = A)y*1Bae

. 2
oy = Bs+Bex +Bry+ Bz + 1/2(‘!2—)'2)312*‘%5:3‘*

1

B+ + B3ixz
(1-A) x°Bar+Baxy Bsa

+ [=x?+(1-1)z")82s— Baex® -

1
(1=2)

3 3
+B33yz + Baelz’ '322“]‘*'ﬁss["‘)‘?“"(A + 1)123’] +B‘1[-‘);—+ A+ l)x’y].

+Bar{z = 3x%2)+ Bsl-2xyz) + Baa[ —2xyz]+ Bas[-3Axy ]+ Bso[—3Axy)

+B4.[;-;rzy +23y]+Bs: [—(A f_ 1) x’z] +ﬁ“[-(%) zz] +ﬂ“[x’z -y*z]

+553/2[xzz--y=z]+ﬁn[( 22 )xzz]+,8“/2[-y’x +zzx]+p,3[—y’x+zzx]

A-1

woa[ () ] e sal (D) 5] pa(759) )

O = Bo+ Biox +Buy + B2z +ﬁzv\’z+ﬁzvy’-1/2(ﬁu+Bu)z’+B,.xy :

T3, 2 3A3=a+1)7 . 3A*-A+1)
+B3sxz + Basyz +ﬁ.g[x’+yz;%j—l] +B,o[y’+xzy—x—_—1—]

3 ] 3 ’ v
+ﬁ,z[—-z3—+(). + l)yzlz] +ﬁ.9[-%+A(A + l)y,zz] + Beo[—2xyz]

+Bes[—2xyz)+Bas [(

A i 1) xz)’] +Bas(3Ax?y1+ Bss[—Ax’y])
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+Bn[-x y(AA +11)—z’y]+él:—'[xz>"'zz)']+ﬁﬂ[‘z"yzz]"'ﬁ"[(:\%l)’z’]

2

+ﬁu(3'\)’2xl+Bs:[-'\y’x]+ﬁn[—i :-11 yix -1z} ] B“[y x-23x]

+ﬁu["3/\)’zZ]+B47["3l\y:Z]
ey =Br3+B1ax —(Ba+Brsly +B1s2 +(x¥ =z B+ (y - 28

‘%(ﬁn*ﬁn+3u)21+ﬁnxy-(ﬁu+23”)xz-(ﬁza+234o))'¢ :
"“ﬂu[-s(:’_1)-sz]+ﬂso[-(:'i—1‘)x’]+ﬂss[‘£;'+)’zx]+5u[xs-32231
+B"[§ (AAI) ]”3"[ 3(4\1 T "] 5"["()\_&)"3]
+5s:[-%’+12)’]+ﬁsaU’—322Y]+561[§(%YJ]“'Bsn[A;I

+Bsc[‘\;1 2’4‘)'22] +3‘°[A:’] "'363 [A; ] +B“[A; ] +5u[‘\;3] + Bsalxyz)

"519+ﬂzo¥ + 831y —(Br+B14)2 +(y’-x HBaa+(z2—1%)Bss

z’+x’z]

- i(ﬁso*'ﬁn“'ﬁ:s)x 2 (Bys+2Ba)xy—(Bn ji-Zﬁn)xz + Baayz

I R Mo

+ﬁo;[%x’] +Be [%Ia] +B8s1 [-‘3'(%_":5"11)'] +Bu [—'A—i'fy’] +ﬁ“[__y3_’+ z’y]

3
ZAy ] +Bealz? —3x32)+ Bes[xyz]+ Barl3Axz]

+551U,-3X=Y]+ﬁsz[m

+ﬁso[:A:11 2]*'5«[: i]*’ﬁss["u .]+B.7[ (A—:Ei—l—) z+y? 2]

O = Bro—(Bra+Ba)x + Bray +Buz +(x* —y)Ba+(2 = y)Beo

‘%(ﬁzo +Ba2+B1s)y’ — (Bae+2B42)xy + Baaxz ~(Bu+2B3)yz
— 1)y TR
+ﬂsv[£’—3y’x]+ﬂw[g—5—)z-+x’y]+ﬁ.;[(13—1)y—+z’y]
Ay’ Ay Ay A
O O N e

128



Ox Oy O, Oxy Cvz oi(
Consr.|| A Bia Bag | Pao Pas Fsé
X B2 Bis | Baz | Bar | Baa | Fear
Y £ P Bza | Paz | Bso | Bss
z 134 Aia Az Bas A= Fsa
XY Bs Fis Az Fsz | Aso
YZ || A Aiq Faz | Fas B
XZ I8 Ao Bz Las Bss
S Bz | Bsa | Pac Bz
Y: | A Pas | Far | Fsa
z? /e B2z Bss | B¢z
XYZ || o Azz | Pz
xY? Bz
XY B3z
Yz* || A
Y:Z || A=
xz* Baa
xz Bas
x| As
Y3 Bz @-Qﬂ__]
z3 A3q
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